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Molecular materials are expected to play an important role in a c
the future in the development of electronic devices. For the § 1ok Metal
realization of molecular electronic devices, it is essential to develop =or Te oy ﬂ
a “dual-action system® whose conducting properties can be sharply g 5 F & 0.59K
controlled by external forces. One of the prospective dual-action E % T E B '
molecular systems is a composite system consisting of organic Tempsrature (K) 2 5
layers responsible for electron conduction and inorganic layers with b = F
localized magnetic momentsyhose conductivity can be controlled 5 2 'mem %
by tuning the magnetic state of the inorganic layers. Here we report RIS § i o
two organic superconductors exhibiting remarkable electromagnetic S ?_ /120K 0 _-ﬂ s
response. One is a superconductor with metamagnetic anion layers, _«Eg ! J wa| E 2 =
and the other is a system with diluted magnetic moments. 2 e 0sse E ! / Hia

Unprecedented systems such as paramagnetic organic supercon- Magnetic field (T)

ductorg and ferromagnetic organic metaleave been recently ) ) o .
Figure 1. Electromagnetic properties and switching behavio-(BETS)-

developed by combining-donor molecules and magnetic anions. i / X . N
. . . . . FeBr. (a) Successive antiferromagnetic and superconducting transitions:
We discovered the first antiferromagnetic organic superconductor, Ty = 2.5 K; T = 1.1 K (ref 4). (b) Magnetization curve at 2.0 K for the

k-(BETS)FeBr (BETS= bis(ethylenedithio)tetraselenafulvalefie).  magnetic field parallel ta (easy axis of antiferromagnetic spin structure)

In the crystal, the conduction layers of BETS molecules and (ref 4). (c) The periodic superconductor metal switching synchronizing

magnetic anion layers are arranged alternately alongothgis. with the periodical modulation of magnetic fieltH|ja) around 1.6 T at

An indication of field-ind d rconductivity has been r ntl 0.59 K. Small resistivity minima (blue triangles) beside the large peaks are
) ca 0_ 0 _e -induced supe CO_ UC_ y has beenrecently e 1 the JaccarinePeter compensation effect (ref 7).

discovered in this systef®. It may be imagined that the super-

Time (arbitrary units) ———=

conducting state will be broken if the antiferromagnetic state of e d ¢ ba

ar_lion layers is changed to_a f(_erromagnetic state. _It was found thr?lt 104 i H/ ac plane aleK

this unprecedented combination of metamagnetism and organic Lt Hil) gass

superconductivity is realized ir(BETS)FeBw, (Figure 1a,b). The 0 102\ ( g3

critical field of metamagnetic transition is about 1.6* TWe S T -

measured the resistivity ok-(BETS)FeBr, at 0.59 K with g 10 i

periodically changing external field around 1.6 T and found that § 102] |

the superconducting state can be sharply switched on or off by = L ¢d cba

controlling the metamagnetism of the anion layers by applying an g 10t l\ Hi b* a 16K

external field (Figure 1c). z w2l (H) 022
Recently, a novel realization of field-effect switching between e | d 30

insulating and superconducting states, which is the widest possible 100k

variation of electrical properties of materials, has attracted great af

attention® We have recently found an organic conductor in which 0 e A

superconducting, metallic, and insulating states can be realized Magnetic field (T)

selectively by slightly tumng the external magnetic field. B_esm_ies Figure 2. Magnetoresistance df(BETS)Fe 4GayCla up to 15 T at 1.6
k-(BETS)FeBuy, there exists another needle-shaped modification, 374  for the magnetic fields parallel (upper paHjac plane) and

A-(BETS)FeCl, which is a remarkable conductor showing surpris- perpendicular (lower parti||b*) to the conduction plane.

ingly rich electronic propertieslt undergoes an antiferromagnetic

insulating transition at 8.5 R&> however, under a magnetic field  A-(BETS)FeGa Cls (0.35 < x < 0.5), which are prepared

it becomes a metal above 11 T, wheréFepins are in the forced-  electrochemically from the organic solution containing BETS and
ferromagnetic orientation, and then takes a field-induced super- mixed electrolyte of [(GHs)sN]JFeClW/[(C-Hs)sN]GaCl, undergoes
conducting state at 1842 T for the field parallel to the conduction  an unprecedented superconductor-to-insulator transftidfor
plane @c plane)?*® In addition, it becomes a superconductor at example A-(BETS)Fe sGa 6Cla is superconducting at 4-68.4 K

high pressuré Furthermore, the diluted magnetic anion systems and insulating below 3.4 K. We examined the magnetoresistance
of this system at 1:63.4 K up to 15 T (Figure 2). For the magnetic

* Address correspondence to this author. E-mail: hayao@ims.ac.jp. ] H * Ay i i
t Institute for Molecular Science. field applled parallel to thé* axis (that is, perp.endlcular to thee
*The University of Tokyo. conduction planeH]||b*, or Hp)), successive insulator- super-
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a b conducting regions around 5 T will be natural. Due to the
s Higcplane | _ 104 I antiferromagnetismt;,; will be small in the insulating phase. But
% p Metal  (HI) S bl nsuator sk at low temperaturesliy is considered to increase quickly to about
25 gwa_ 14 T when going out from the insulating region. Thus, there will
2, L be a possibility of the existence of a narrow magnetic field region
5, -%100- just outside the insulating phase, where the external filgh)(is

0 g almost compensated withy,; to permit an unusual superconducting
— E T | etal state aroud 5 T for the field perpendicular to the conduction plane
x ) .
s y7 GiE 102 |l (IHext — Hingd < 2.5 T~ Hex(GaCly)). Furthermore, as demonstrated
5 st Metal  (HL) . . . K . )
8 i = bl in Figure 3b, owing to the unique phase diagram with narrow
“g’ 2r % = ok superconducting regions neighboring both insulating and metallic
© insulator’ (Y. yac plane phases, the periodic insulater superconductor- metal changes

o T Y T T Y T

can be realized in a stepwise manner by periodical modulation of
the external field, which means that the widest variation of electrical
Figure 3. (a) Temperature vs magnetic field phase diagram(@ETSyFes properties was actualized in this dual-functional molecular material.
Gay ¢Cls for the field parallel (upper parti||ac plane) and perpendicular It is surprising that the unprecedented bulk conductor, whose
(lower part,H||b*) to the conduction plane. The open and closed circles jnsulating, metallic, and superconducting states can be selectively

indicate metal—to—supe_rconductor and superconduptor—to—lnsulator transition .o 5jized by slight tuning of the external field, was discovered in
temperatures, respectively. (b) An example of the insutat@uperconduc- th | | terial
tor — metal switching behavior coupled with the periodic modulation of € molecular materials.

magnetic field around 2.5 TH(|ac plane) at 3 K.
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In the hitherto reported two-dimensional organic superconductors,
the upper critical field perpendicular to the conduction plahgs,

is much smaller than that parallel to the conduction pl&hg, In

the case ofl-(BETS)GaCl,, Hcy andHc.n are reported to be about
12 and 2.5 T, respectively at 1.5%KTherefore, the existence of a
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